CURSO DE SPARK

FICHA DO CURSO

1. Resumo do curso

Curso: Curso de Spark – Distribuição e Processamento de Dados

Modalidade: Ensino à distância Duração do curso: 9 semanas Carga horária total: 36 horas Carga horária semanal: 4 horas

Carga horária síncrona: 2,5 horas por semana Carga horária assíncrona: 1,5 horas por semana

Início da oferta: Março/2023 Fim da oferta: Maio/2023

Pré-requisitos: Conhecimentos do sistema operacional GNU/Linux ou Unix (noções de utilização de terminal shell, de variáveis de ambiente de sistema, de comunicação em rede com utilização de ssh) e conhecimentos

em linguagem Python.

2. Objetivos

Capacitar o(a) cursista a utilizar as soluções Apache Hadoop e Apache Spark para o desenvolvimento de aplicações para resolução de problemas na área da Ciência de Dados. Realizar tarefas de implantação, configuração, e integração de dados em *cluster*.

Ao final do curso, o(a) cursista terá como habilidades principais a capacidade para planejar e preparar a infraestrutura de dados de uma organização, podendo projetar, construir, integrar e manter banco de dados ou outras fontes de dados, bem como conhecer as técnicas e ferramentas para o desenvolvimento de aplicações com Apache Spark para o processamento de dados em larga escala.

3. Programa/Ementa

Apresentação do Ecossistema Apache Hadoop; Instalação e configuração do ambiente Apache Hadoop; Estudo do sistema de arquivos HDFS (Hadoop Distributed File System) e do modelo de programação MapReduce; Criação de cluster para processamento de dados; Gerenciamento de recursos e escalonamento de tarefas com YARN; Desenvolvimento de aplicações com MapReduce em linguagem Python; Integração do Ecossistema Hadoop com módulos adicionais: bancos de dados e outras fontes de dados; Introdução ao Apache Spark; Instalação, configuração e integração do ambiente Apache Spark; Abstrações de dados RDD (Resilient Distributed Dataset), Dataframe e Datasets; Comparação Spark vs Hadoop; Desenvolvimento de Aplicações com pySpark; SparkSQL; Estudo das bibliotecas Spark MLlib, Spark GraphX e aplicações práticas; e Noções de SparkR.

4. Procedimentos metodológicos e didáticos

Os procedimentos metodológicos que serão adotados no curso envolvem aulas expositivas (online), plantões de dúvidas (online), práticas interativas, exercícios complementares e trabalhos de implementação.

As aulas expositivas estão programadas para ocorrerem às sextas-feiras de cada semana a partir das 08h30, e os plantões de dúvidas ocorrerão às quintas-feiras de cada semana também a partir das 08h30. As aulas expositivas e plantões de dúvidas ocorrerão de forma síncrona por meio da ferramenta Webex. O detalhamento de conteúdo e o respectivo período de aulas e plantões de dúvidas estão indicados na Seção 7.

A plataforma utilizada para acompanhamento, comunicação e divulgação dos materiais do curso será o ambiente de aprendizado Moodle do Centro de Formação e Aperfeiçoamento de Servidores do Poder Judiciário (CEAJUD).

As atividades práticas que serão desenvolvidas pelos(as) cursistas envolvem a configuração do sistema operacional GNU/Linux para a instalação e (também) configuração das ferramentas Apache Hadoop, Apache Spark e módulos adicionais. Os(as) cursistas, no decorrer do curso, irão realizar atividades práticas de implantação, configuração e programação, focando na resolução de problemas similares ou correlatos aos do Poder Judiciário. A cada semana, os(as) cursistas serão expostos a problemas e utilizarão o conhecimento adquirido durante as aulas para a resolução dos mesmos.

De maneira resumida, a cada semana (em um total de 9 semanas) os(as) cursistas deverão desenvolver as seguintes atividades:

- 1) Estudar o material pré-aula como forma de preparo para a aula;
- 2) Assistir às aulas programadas para a semana no horário definido;
- 3) Trabalhar nos exercícios disponibilizados pelo professor;
- 4) Realizar o estudo individual dos materiais indicados, tais como leituras complementares, resolução de exercícios e acesso a vídeos adicionais;
- 5) Participar do fórum do curso contribuindo com tópicos para a discussão ou respondendo e complementando tópicos em aberto relacionados ao conteúdo apresentado (opcional);
- 6) Realizar as tarefas de avaliação semanal, respondendo aos questionários aplicados.

5. Requisitos técnicos

Para a realização das atividades práticas de implantação, configuração e programação do Apache Hadoop e Apache Spark no decorrer do curso, é necessário que cada cursista possua um computador pessoal com uma configuração mínima de 8 GB de RAM e 40 GB disponível em disco.

O curso será direcionado à implantação das soluções Apache Hadoop e Apache Spark em ambiente GNU/Linux. Neste sentido, é requisitado que o sistema GNU/Linux esteja instalado nativamente no computador ou que se recorra ao uso de soluções de virtualização que permitam a instalação do referido sistema operacional.

6. Carga horária do(a) cursista

A Tabela 1 a seguir apresenta distribuição da carga horária semanal total do(a) cursista, de 4 horas por semana, nas atividades semanais previstas na vigência do curso.

Tabela 1 – Carga horária semanal do(a) cursista.

Atividade semanal	Carga horária (horas)	Fração (%)
Estudo individual de conteúdo pré-aula	00:30	12,5
Participação na aula ao vivo	01:30	37,5
Estudo individual pós aula	00:30	12,5
Participação no plantão de dúvidas	01:00	25,0
Participação no fórum	00:30	12,5
Total	04:00	100

7. Conteúdo programático

Tabela 2 – Conteúdo programático previsto e respectivo período.

Unidade	Conteúdo	Período
1	Apache Hadoop	De 10/03 a 16/03/2023:
	Introdução ao Ecossistema Hadoop	- 10/03 aula síncrona
	Sistema de arquivos HDFS	- 16/03 plantão de dúvidas

	Modelo de programação MapReduce		
	Gerenciamento de recursos com Yarn		
	Instalação e configuração do Hadoop (standalone e multi-node)		
	Análise de logs para diagnóstico e resolução de problemas		
2	Apache Hadoop		
	Desenvolvimento de aplicações com MapReduce	De 17/03 a 23/03/2023:	
	Execução e monitoramento de tarefas	- 17/03 aula síncrona	
	Visão geral de módulos adicionais Hadoop: Hive, Hbase, Sqoop e	- 23/03 plantão de dúvidas	
	Mahout		
3	Apache Spark		
	Introdução ao Ecossistema Spark		
	Comparação Spark vs Hadoop	De 24/03 a 30/03/2023:	
	Abstração de dados: RDD, Dataframe e Dataset	- 24/03 aula síncrona	
	Instalação e configuração do Spark (standalone e cluster)	- 30/03 plantão de dúvida	
	Integração com Apache Hadoop		
	Programação com pySpark: RDD		
4	Apache Spark	Do 21/02 o 12/04/2022	
	Spark Web UI: Interface de usuário e DAG	De 31/03 a 13/04/2023:	
	Programação com pySpark: Dataframe e Dataset	- 31/03 aula síncrona	
	API Pandas no Spark	- 06/04 plantão de dúvida	
	Interação com fontes de dados e Aplicações práticas	- 13/04 plantão de dúvida	
5	Apache Spark - SparkSQL	De 14/04 a 27/04/2023:	
	Programação com pySpark: SparkSQL	- 14/04 aula síncrona	
	Manipulação de dados com SparkSQL	- 20/04 plantão de dúvida	
	Aplicações práticas	- 27/04 plantão de dúvida	
6	Apache Spark – MLlib		
	Fundamentos de Machine Learning	De 28/04 a 04/05/2023:	
	Machine Learning no Spark	- 28/04 aula síncrona	
	Criação de pipelines com Machine Learning	- 04/05 plantão de dúvida	
	Aplicações práticas		
7	Apache Spark - Streaming		
	Modelo de programação Spark Structured Streaming	De 05/05 a 11/05/2023:	
	Criação de Streams com Dataframe e Dataset	- 05/05 aula síncrona	
	Operações sobre Streams de dados	- 11/05 plantão de dúvida	
	Aplicações práticas		
8	Apache Spark - Spark R	De 12/05 a 18/05/2023:	
	Introdução ao Spark R	- 12/05 aula síncrona	
	Exemplos de programação em R para Spark	- 18/05 plantão de dúvida	
9	Apache Spark - GraphX	De 19/05 a 25/05/2023:	
9			
9	Fundamentos de grafos	- 19/05 aula síncrona	

8. Avaliação dos(as) cursistas no curso

8.1 Avaliação de Desempenho

Os(as) cursistas serão avaliados por meio de questionários semanais. Algumas questões serão teóricas e outras de cunho prático, cuja resposta virá da realização de determinada atividade prática.

O desempenho no curso será determinado pela média aritmética simples das notas obtidas nas tarefas semanais aplicadas aos/às cursistas.

8.2 Avaliação de Participação

A frequência de participação no curso será determinada pela realização das tarefas semanais de avaliação do curso ou questões do material pré-aula/pós-aula. Receberão certificados de participação aqueles que obtiverem aproveitamento igual ou superior a 70% nessas atividades.

8.3 Avaliação de Reação

Ao final do curso será aplicada uma avaliação de reação, por meio da qual os(as) cursistas responderão a um formulário de reação com questões relativas ao curso, seu conteúdo e didática do professor, com o intuito de a avaliar a percepção dos(as) cursistas quanto ao curso realizado no alcance dos objetivos.

9. Referências Bibliográficas

- 1) Parsian, Mahmoud. Data Algorithms with Spark: Recipes and Design Patterns for Scaling Up Using Pyspark. Sebastopol, CA, USA: O'Reilly Media, 2022. Print.
- 2) Damji, Jules; Wenig, Brooke; Das, Tathagata; Lee, Denny. Learning Spark: Lightning-Fast Data Analytics. Sebastopol, CA, USA: O'Reilly Media, 2020. Print.
- 3) Chambers, Bill; Zaharia, Matei. **Spark: The Definitive Guide: Big Data Processing Made Simple**. Sebastopol, CA, USA: O'Reilly Media, 2018. Print.
- 4) White, Tom. **Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale**. Sebastopol, CA, USA: O'Reilly Media, 2015. Print.
- 5) Hamstra, Mark; Zaharia, Matei; Karau, Holden. **Learning Spark: Lightning-Fast Data Analysis**. Sebastopol, CA, USA: O'Reilly Media, 2015. Print.
- 6) Documentação Apache Hadoop. Disponível em: https://hadoop.apache.org/docs/current/
- 7) Documentação Apache Spark. Disponível em: https://spark.apache.org/docs/latest/
- 8) **Spark with Python (PySpark) Tutorial For Beginners**. Spark by Examples. Disponível em: https://sparkbyexamples.com/pyspark-tutorial/
- 9) **Documentação SparkR (R on Spark)**. Disponível em: https://spark.apache.org/docs/latest/sparkr.html
- 10) Luraschi, Javier; Kuo, Kevin; Ruiz, Edgar. Mastering Spark with R: The Complete Guide to Large-Scale Analysis and Modeling. Sebastopol, CA, USA: O'Reilly Media, 2019. Print.

10. Informações sobre o professor

O instrutor do curso é o Professor Carlos Manuel Dias Viegas, Professor Adjunto do Departamento de Engenharia de Computação e Automação (DCA) da Universidade Federal do Rio Grande do Norte (UFRN). O Professor Carlos Viegas é Doutor em Engenharia Informática (2015) pela Faculdade de Engenharia da Universidade do Porto, Porto, Portugal. Mestre em Engenharia Elétrica e de Computação (2009) e Engenheiro de Computação (2006) pela Universidade Federal do Rio Grande do Norte, Natal/RN, Brasil. Tem experiência nas áreas de redes de computadores, segurança da informação, engenharia de dados e sistemas de comunicação de tempo real. Para contato enviar e-mail para viegas@dca.ufrn.br.

